

Advances in Engineering Geophysical Methods

Satar Hasan Fugro Middle East

7-8th November 2012

How do we reduce subsurface uncertainty with respect to abnormal subsurface conditions (voiding/weak zones)?

- geotechnical boreholes/sampling/wireline logging
- geophysical techniques

Geophysics can be used to optimise intrusive programmes and to interpolate between points of borehole control

The Geophysical Toolkit

- GPR
- EM
- Microgravity
- ERT
- Seismic refraction
- MASW

Site Conditions:

- dry limestone
- deep water table
- subdued topography
- low ground conductivity
- high K contrast target
- shallow target

...GPR

- 100 MHz system
- 0.25 m station interval
- 64 stacks per station

- no apparent relative movement
- structure 'dilates' at depth
- structure extends to surface

Electromagnetic Conductivity Profile

Development site

clays/marls over Triassic limestone and dolomite

> many surface features

major faults

site bounded by Jurassic and Carboniferous strata

Geotechnica ME

Limiting Factors For Investigation

- **MASW** dependent on frequency content/site conditions
- **Refraction** velocity inversion
- Microgravity depth/resolution
- ERT depth/resolution/masking
- **GPR** conductivity
- EM depth/resolution

MASW Dispersion Curve

MASW – Low Frequency Requirements

Qatar applications > 20 m depth

The Multicomponent Seismic Wavefield Most shallow investigations use only the **slow velocity component** of the seismic wavefield

The Multicomponent Seismic Wavefield

The higher velocity **reflected component** is not generally used for very shallow onshore geotechnical investigation < 40 m

DISTANCE

P and S Wave Velocities by Material

Material	Vp (m/s)	Vs (m/s)
Air	330	N/A
Water	1450-1530	N/A
Soil	100-500	50-150
Made Ground	160-600	50-300
Sand (dry, loose)	200-1000	50-400
Sand (water saturated, loose)	1500-2000	50-400
Sand & Gravel	400-2300	100-750
Clay	1000-2500	200-700
Estuarine muds/clay	300-1800	150-600
Floodplain alluvium	1800-2200	100-500
Sandstone	1400-5000	700-2800
Mudstone	1600-5000	600-2500
Shales	2000-4100	600-2100

P- and S-Wave - Resolution

3C Land Streamer

3C Land Streamer - Components

3C Land Streamer - Captured Wave Modes

Wave modes and particle displacement vectors

3C SV Section

Interpreted SV Profile

3C, Vertical Source

Uncertainty Reduction – Multicomponent Seismic

Thank You

